Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(16): 8822-8832, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057992

RESUMO

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our ∼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Aciltransferases/química , Domínio Catalítico , Policetídeos/metabolismo , Especificidade por Substrato
2.
Biotechnol Biofuels ; 14(1): 101, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883010

RESUMO

BACKGROUND: Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates. RESULTS: This study focuses on the optimization of production of the monoterpene 1,8-cineole and the sesquiterpene α-bisabolene in R. toruloides. The α-bisabolene titer attained in R. toruloides was found to be proportional to the copy number of the bisabolene synthase (BIS) expression cassette, which in turn influenced the expression level of several native mevalonate pathway genes. The addition of more copies of BIS under a stronger promoter resulted in production of α-bisabolene at 2.2 g/L from lignocellulosic hydrolysate in a 2-L fermenter. Production of 1,8-cineole was found to be limited by availability of the precursor geranylgeranyl pyrophosphate (GPP) and expression of an appropriate GPP synthase increased the monoterpene titer fourfold to 143 mg/L at bench scale. Targeted mevalonate pathway metabolite analysis suggested that 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), mevalonate kinase (MK) and phosphomevalonate kinase (PMK) may be pathway bottlenecks are were therefore selected as targets for overexpression. Expression of HMGR, MK, and PMK orthologs and growth in an optimized lignocellulosic hydrolysate medium increased the 1,8-cineole titer an additional tenfold to 1.4 g/L. Expression of the same mevalonate pathway genes did not have as large an impact on α-bisabolene production, although the final titer was higher at 2.6 g/L. Furthermore, mevalonate pathway intermediates accumulated in the mevalonate-engineered strains, suggesting room for further improvement. CONCLUSIONS: This work brings R. toruloides closer to being able to make industrially relevant quantities of terpene from lignocellulosic biomass.

3.
Nat Commun ; 11(1): 2931, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523014

RESUMO

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Assuntos
Ferro/metabolismo , Lisina/metabolismo , Oxigenases/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Pseudomonas putida/metabolismo
4.
J Am Chem Soc ; 142(22): 9896-9901, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32412752

RESUMO

Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated ß-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates  into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host Streptomyces albus J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products.


Assuntos
Biologia Computacional , Policetídeo Sintases/química , Engenharia de Proteínas , Estrutura Molecular , Policetídeo Sintases/metabolismo
6.
ChemSusChem ; 13(17): 4455-4467, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32160408

RESUMO

There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.


Assuntos
Hidrocarbonetos Aromáticos/química , Lignina/química , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/metabolismo , Aminoácidos/química , Biomassa , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/farmacologia , Líquidos Iônicos/química , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
7.
Metab Eng Commun ; 9: e00098, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720214

RESUMO

Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.

8.
Metab Eng ; 56: 85-96, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31499175

RESUMO

Isoprenol (3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals. Biological production of isoprenol via the mevalonate pathway has been developed and optimized extensively in Escherichia coli, but high ATP requirements and isopentenyl diphosphate (IPP) toxicity have made it difficult to achieve high titer, yield, and large-scale production. To overcome these limitations, an IPP-bypass pathway was previously developed using the promiscuous activity of diphosphomevalonate decarboxylase, and enabled the production of isoprenol at a comparable yield and titer to the original pathway. In this study, we optimized this pathway, substantially improving isoprenol production. A titer of 3.7 g/L (0.14 g isoprenol per g glucose) was achieved in batch conditions using minimal medium by pathway optimization, and a further optimization of the fed-batch fermentation process enabled an isoprenol titer of 10.8 g/L (yield of 0.105 g/g and maximum productivity of 0.157 g L-1 h-1), which is the highest reported titer for this compound. The substantial increase in isoprenol titer via the IPP-bypass pathway in this study will facilitate progress toward commercialization.


Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Hemiterpenos , Engenharia Metabólica , Ácido Mevalônico/metabolismo , Compostos Organofosforados , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemiterpenos/genética , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo
9.
J Ind Microbiol Biotechnol ; 46(8): 1225-1235, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115703

RESUMO

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,ß-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3-ß11 and ß7-α2. From the catalytic Asp located in α3 to a conserved Pro in ß11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.


Assuntos
Policetídeo Sintases/química , Sítios de Ligação , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Modelos Moleculares , Policetídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
Biotechnol Biofuels ; 12: 130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143243

RESUMO

BACKGROUND: Single guide RNA (sgRNA) selection is important for the efficiency of CRISPR/Cas9-mediated genome editing. However, in plants, the rules governing selection are not well established. RESULTS: We developed a facile transient assay to screen sgRNA efficiency. We then used it to test top-performing bioinformatically predicted sgRNAs for two different Arabidopsis genes. In our assay, these sgRNAs had vastly different editing efficiencies, and these efficiencies were replicated in stably transformed Arabidopsis lines. One of the genes, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT), is an essential gene, required for lignin biosynthesis. Previously, HCT function has been studied using gene silencing. Here, to avoid the negative growth effects that are due to the loss of HCT activity in xylem vessels, we used a fiber-specific promoter to drive CAS9 expression. Two independent transgenic lines showed the expected lignin decrease. Successful editing was confirmed via the observation of mutations at the HCT target loci, as well as an approximately 90% decrease in HCT activity. Histochemical analysis and a normal growth phenotype support the fiber-specific knockout of HCT. For the targeting of the second gene, Golgi-localized nucleotide sugar transporter2 (GONST2), a highly efficient sgRNA drastically increased the rate of germline editing in T1 generation. CONCLUSIONS: This screening method is widely applicable, and the selection and use of efficient sgRNAs will accelerate the process of expanding germplasm for both molecular breeding and research. In addition, this, to the best of our knowledge, is the first application of constrained genome editing to obtain chimeric plants of essential genes, thereby providing a dominant method to avoid lethal growth phenotypes.

11.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064836

RESUMO

Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research.IMPORTANCEP. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.


Assuntos
Aptidão Genética , Lisina/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Redes e Vias Metabólicas
12.
Nature ; 567(7746): 123-126, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814733

RESUMO

Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia1. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications2. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments3. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids4, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway5. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid6, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases7,8. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency9. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.


Assuntos
Vias Biossintéticas , Canabinoides/biossíntese , Canabinoides/química , Cannabis/química , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/biossíntese , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Benzoatos/metabolismo , Vias Biossintéticas/genética , Canabinoides/metabolismo , Cannabis/genética , Dronabinol/análogos & derivados , Dronabinol/metabolismo , Fermentação , Galactose/metabolismo , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Saccharomyces cerevisiae/genética , Salicilatos/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(49): 12507-12512, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30446608

RESUMO

Colwellia psychrerythraea 34H is a model psychrophilic bacterium found in the cold ocean-polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilic Escherichia coli When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux network flexibility and enabled CO2 fixation. In glucose-only medium, the Entner-Doudoroff (ED) pathway was the primary glycolytic route; in lactate-only medium, gluconeogenesis and the glyoxylate shunt became active. In comparison, E. coli, cold stressed at 4 °C, had rapid glycolytic fluxes but no biomass synthesis. At their respective normal-growth temperatures, intracellular concentrations of TCA cycle metabolites (α-ketoglutarate, succinate, malate) were 4-17 times higher in 34H than in E. coli, while levels of energy molecules (ATP, NADH, NADPH) were 10- to 100-fold lower. Experiments with E. coli mutants supported the thermodynamic advantage of the ED pathway at cold temperature. Heat-stressed 34H at room temperature (2 hours) revealed significant down-regulation of genes associated with glycolytic enzymes and flagella, while 24 hours at room temperature caused irreversible cellular damage. We suggest that marine heterotrophic bacteria in general may rely upon simplified metabolic strategies to overcome thermodynamic constraints and thrive in the cold ocean.


Assuntos
Alteromonadaceae/metabolismo , Temperatura Baixa , Processos Heterotróficos/fisiologia , Modelos Biológicos , Oceanos e Mares , Metabolismo Energético/fisiologia
14.
Nat Commun ; 9(1): 4569, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385744

RESUMO

Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.


Assuntos
Cetonas/metabolismo , Policetídeo Sintases/genética , Streptomyces/genética , Biologia Sintética
15.
Microb Cell Fact ; 17(1): 136, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172260

RESUMO

BACKGROUND: ß-Ionone is a fragrant terpenoid that generates a pleasant floral scent and is used in diverse applications as a cosmetic and flavoring ingredient. A growing consumer desire for natural products has increased the market demand for natural ß-ionone. To date, chemical extraction from plants remains the main approach for commercial natural ß-ionone production. Unfortunately, changing climate and geopolitical issues can cause instability in the ß-ionone supply chain. Microbial fermentation using generally recognized as safe (GRAS) yeast offers an alternative method for producing natural ß-ionone. Yarrowia lipolytica is an attractive host due to its oleaginous nature, established genetic tools, and large intercellular pool size of acetyl-CoA (the terpenoid backbone precursor). RESULTS: A push-pull strategy via genome engineering was applied to a Y. lipolytica PO1f derived strain. Heterologous and native genes in the mevalonate pathway were overexpressed to push production to the terpenoid backbone geranylgeranyl pyrophosphate, while the carB and biofunction carRP genes from Mucor circinelloides were introduced to pull flux towards ß-carotene (i.e., ionone precursor). Medium tests combined with machine learning based data analysis and 13C metabolite labeling investigated influential nutrients for the ß-carotene strain that achieved > 2.5 g/L ß-carotene in a rich medium. Further introduction of the carotenoid cleavage dioxygenase 1 (CCD1) from Osmanthus fragrans resulted in the ß-ionone production. Utilization of in situ dodecane trapping avoided ionone loss from vaporization (with recovery efficiencies of ~ 76%) during fermentation operations, which resulted in titers of 68 mg/L ß-ionone in shaking flasks and 380 mg/L in a 2 L fermenter. Both ß-carotene medium tests and ß-ionone fermentation outcomes indicated the last enzymatic step CCD1 (rather than acetyl-CoA supply) as the key bottleneck. CONCLUSIONS: We engineered a GRAS Y. lipolytica platform for sustainable and economical production of the natural aroma ß-ionone. Although ß-carotene could be produced at high titers by Y. lipolytica, the synthesis of ß-ionone was relatively poor, possibly due to low CCD1 activity and non-specific CCD1 cleavage of ß-carotene. In addition, both ß-carotene and ß-ionone strains showed decreased performances after successive sub-cultures. For industrial application, ß-ionone fermentation efforts should focus on both CCD enzyme engineering and strain stability improvement.


Assuntos
Engenharia Metabólica/métodos , Norisoprenoides/metabolismo , Yarrowia/metabolismo
16.
Chembiochem ; 19(13): 1391-1395, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603548

RESUMO

Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. Although ß-amino acid loading in the fluvirucin B2 polyketide pathway was proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. Here we elucidate the complete biosynthetic pathway of the ß-amino acid loading pathway in fluvirucin B2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferases to selectively transfer ß-amino acids onto a polyketide synthase (PKS) loading platform. The results presented here provide a detailed biochemical description of ß-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.


Assuntos
Aminoácidos/metabolismo , Desoxiaçúcares/biossíntese , Actinobacteria/química , Actinobacteria/enzimologia , Aciltransferases/química , Aciltransferases/metabolismo , Aminoacilação , Carbono-Enxofre Ligases/química , Carbono-Enxofre Ligases/metabolismo , Carboxiliases/química , Carboxiliases/metabolismo , Catálise , Lactamas , Estrutura Molecular , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Domínios Proteicos , Especificidade por Substrato
17.
Biotechnol Biofuels ; 11: 340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607175

RESUMO

BACKGROUND: Geranylgeranyl reductase (GGR) is a flavin-containing redox enzyme that hydrogenates a variety of unactivated polyprenyl substrates, which are further processed mostly for lipid biosynthesis in archaea or chlorophyll biosynthesis in plants. To date, only a few GGR genes have been confirmed to reduce polyprenyl substrates in vitro or in vivo. RESULTS: In this work, we aimed to expand the confirmed GGR activity space by searching for novel genes that function under amenable conditions for microbial mesophilic growth in conventional hosts such as Escherichia coli or Saccharomyces cerevisiae. 31 putative GGRs were selected to test for potential reductase activity in vitro on farnesyl pyrophosphate, geranylgeranyl pyrophosphate, farnesol (FOH), and geranylgeraniol (GGOH). We report the discovery of several novel GGRs exhibiting significant activity toward various polyprenyl substrates under mild conditions (i.e., pH 7.4, T = 37 °C), including the discovery of a novel bacterial GGR isolated from Streptomyces coelicolor. In addition, we uncover new mechanistic insights within several GGR variants, including GGR-mediated phosphatase activity toward polyprenyl pyrophosphates and the first demonstration of completely hydrogenated GGOH and FOH substrates. CONCLUSION: These collective results enhance the potential for metabolic engineers to manufacture a variety of isoprenoid-based biofuels, polymers, and chemical feedstocks in common microbial hosts such as E. coli or S. cerevisiae.

18.
ACS Chem Biol ; 12(11): 2725-2729, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29028314

RESUMO

Streptomyces genomes have a high G + C content and typically use an ATG or GTG codon to initiate protein synthesis. Although gene-finding tools perform well in low GC genomes, it is known that the accuracy in predicting a translational start site (TSS) is much less for high GC genomes. LipPks1 is a Streptomyces-derived, well-characterized modular polyketide synthase (PKS). Using this enzyme as a model, we experimentally investigated the effects of alternative TSSs using a heterologous host, Streptomyces venezuelae. One of the TSSs employed boosted the protein level by 59-fold and the product yield by 23-fold compared to the originally annotated start codon. Interestingly, a structural model of the PKS indicated the presence of a structural motif in the N-terminus, which may explain the observed different protein levels together with a proline and arginine-rich sequence that may inhibit translational initiation. This structure was also found in six other modular PKSs that utilize noncarboxylated starter substrates, which may guide the selection of optimal TSSs in conjunction with start-codon prediction software.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/genética , Streptomyces/enzimologia , Streptomyces/genética , Sequência de Aminoácidos , Expressão Gênica , Genes Bacterianos , Engenharia Genética , Modelos Moleculares , Policetídeo Sintases/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Streptomyces/química , Streptomyces/metabolismo , Especificidade por Substrato
19.
PLoS One ; 12(6): e0178160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594846

RESUMO

Lignin in plant biomass represents a target for engineering strategies towards the development of a sustainable bioeconomy. In addition to the conventional lignin monomers, namely p-coumaryl, coniferyl and sinapyl alcohols, tricin has been shown to be part of the native lignin polymer in certain monocot species. Because tricin is considered to initiate the polymerization of lignin chains, elucidating its biosynthesis and mechanism of export to the cell wall constitute novel challenges for the engineering of bioenergy crops. Late steps of tricin biosynthesis require two methylation reactions involving the pathway intermediate selgin. It has recently been demonstrated in rice and maize that caffeate O-methyltransferase (COMT) involved in the synthesis syringyl (S) lignin units derived from sinapyl alcohol also participates in the synthesis of tricin in planta. In this work, we validate in sorghum (Sorghum bicolor L.) that the O-methyltransferase responsible for the production of S lignin units (SbCOMT / Bmr12) is also involved in the synthesis of lignin-linked tricin. In particular, we show that biomass from the sorghum bmr12 mutant contains lower level of tricin incorporated into lignin, and that SbCOMT can methylate the tricin precursors luteolin and selgin. Our genetic and biochemical data point toward a general mechanism whereby COMT is involved in the synthesis of both tricin and S lignin units.


Assuntos
Vias Biossintéticas , Flavonoides/biossíntese , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Biomassa , Celulose/metabolismo , Cromonas/metabolismo , Flavonoides/química , Lignina/química , Luteolina/metabolismo , Metanol/química , Metilação
20.
ACS Synth Biol ; 6(5): 806-816, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28094975

RESUMO

Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. Meeting these challenges will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression-repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repress transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Using a bioinformatics approach, we identified 54 orthologous systems from various bacteria, and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.


Assuntos
Endorribonucleases/metabolismo , Engenharia Genética/métodos , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Endorribonucleases/genética , Modelos Biológicos , Proteínas de Plantas/genética , Plantas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...